/*
Java 大数据在智能安防视频监控中的异常事件快速响应与处理机制(简化示例)
*/

// 1. Event.java – 异常事件模型
package com.security.model;

public class Event {
private String id;
private String type; // 如: “入侵”, “火警”
private long timestamp;
private String cameraId;
private String location;

public Event(String id, String type, long timestamp, String cameraId, String location) {
    this.id = id;
    this.type = type;
    this.timestamp = timestamp;
    this.cameraId = cameraId;
    this.location = location;
}

// getter 和 toString

}

// 2. EventProcessor.java – 事件处理器
package com.security.core;

import com.security.model.Event;

public class EventProcessor {
public void process(Event event) {
System.out.println(“[ALERT] 异常事件: ” + event);

    switch (event.getType()) {
        case "入侵":
            triggerAlarm(event);
            break;
        case "火警":
            notifyFireDepartment(event);
            break;
        default:
            log(event);
    }
}

private void triggerAlarm(Event e) {
    System.out.println("触发警报,位置: " + e.getLocation());
}

private void notifyFireDepartment(Event e) {
    System.out.println("通知消防部门,摄像头: " + e.getCameraId());
}

private void log(Event e) {
    System.out.println("日志记录: " + e);
}

}

// 3. EventGenerator.java – 模拟数据流产生
package com.security.source;

import com.security.model.Event;

import java.util.UUID;

public class EventGenerator {
public static Event generateRandomEvent() {
String[] types = {“入侵”, “火警”, “非法聚集”};
String type = types[(int)(Math.random() * types.length)];
return new Event(UUID.randomUUID().toString(), type, System.currentTimeMillis(), “CAM-001”, “厂区A门口”);
}
}

// 4. StreamPipeline.java – 简单流式处理模拟
package com.security.core;

import com.security.model.Event;
import com.security.source.EventGenerator;

public class StreamPipeline {
public static void main(String[] args) throws InterruptedException {
EventProcessor processor = new EventProcessor();

    for (int i = 0; i < 10; i++) {
        Event e = EventGenerator.generateRandomEvent();
        processor.process(e);
        Thread.sleep(1000);
    }
}

}

已为你生成并保存项目《Java 大视界:Java 大数据在智能安防视频监控中的异常事件快速响应与处理机制》的示例框架,包含以下模块:


📂 模块结构概览

模块功能描述
Event模型类描述异常事件(如入侵、火警)
EventProcessor业务核心实现不同类型事件的响应处理
EventGenerator模拟数据流随机生成事件模拟大数据流入
StreamPipeline主程序模拟流式接收并处理事件流

📌 可扩展建议

如你想将其提升为真正的大数据处理系统,可进一步:

  • 接入 Kafka 实现事件流式传输
  • 用 Flink/Spark Streaming 做实时处理
  • 接入 ElasticSearch 进行快速索引
  • 使用 MongoDB/HBase 进行海量存储
  • 加入告警推送(钉钉/短信/平台消息)

如果你希望我帮你完成上述某一项集成,只需告诉我方向即可。需要我加上 Kafka、Flink 或 Spring Boot 模板吗?