非常棒 👍!下面是一篇完整的技术教程文章,标题为《残差网络的介绍及ResNet-18的搭建(PyTorch版)》,适合发布在技术博客或用于教学讲解(含图解思路、代码实现与参考链接)。


🧠 深度学习模型系列:残差网络的介绍及 ResNet-18 的搭建(PyTorch版)


🔍 一、为什么需要残差网络(ResNet)?

随着神经网络层数的增加,网络的表达能力理论上会增强,但实际情况却出现了:

  • 梯度消失 / 梯度爆炸
  • 训练精度下降(退化问题)

即:更深的网络反而更难训练,甚至效果比浅层网络差。

ResNet(Residual Network) 的核心思想正是为了解决这一问题。


⚙️ 二、核心思想:残差连接(Residual Connection)

在传统卷积层中:
$$
y = F(x)
$$

在 ResNet 中引入 跳跃连接(shortcut connection)
$$
y = F(x) + x
$$

其中:

  • ( x ):输入特征
  • ( F(x) ):经过卷积层等操作后的输出(残差)
  • ( y ):最终输出

直观理解:
模型不需要学习完整的映射 ( H(x) ),而是学习一个残差 ( F(x) = H(x) – x )。
这让训练变得更容易,收敛更快。


🧩 三、残差块(Residual Block)结构

基本残差块(BasicBlock)示意:

输入
 │
 ├── Conv3x3 → BN → ReLU → Conv3x3 → BN
 │
 └───────────────+
                 │
             ReLU 输出

如果输入与输出通道不一致,则需要使用 1×1 卷积层 调整维度(shortcut projection)。


🧱 四、ResNet-18 网络结构概览

ResNet-18 属于 浅层残差网络(18 层),其结构如下:

层级输出尺寸网络结构
conv1112×1127×7 卷积,64通道,步长2
maxpool56×563×3 最大池化,步长2
conv2_x56×562个 BasicBlock,64通道
conv3_x28×282个 BasicBlock,128通道
conv4_x14×142个 BasicBlock,256通道
conv5_x7×72个 BasicBlock,512通道
avgpool1×1全局平均池化
fc1×1全连接层(分类)

🧰 五、使用 PyTorch 实现 ResNet-18

1️⃣ 导入依赖

import torch
import torch.nn as nn

2️⃣ 定义残差块(BasicBlock)

class BasicBlock(nn.Module):
    expansion = 1  # 通道扩展比例

    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample  # 调整维度的shortcut层

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)

        out += identity
        out = self.relu(out)
        return out

3️⃣ 定义 ResNet 主体结构

class ResNet(nn.Module):
    def __init__(self, block, layers, num_classes=1000):
        super(ResNet, self).__init__()
        self.in_channels = 64
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, out_channels, blocks, stride=1):
        downsample = None
        if stride != 1 or self.in_channels != out_channels * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channels, out_channels * block.expansion,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(out_channels * block.expansion),
            )

        layers = []
        layers.append(block(self.in_channels, out_channels, stride, downsample))
        self.in_channels = out_channels * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.in_channels, out_channels))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        x = self.fc(x)
        return x

4️⃣ 构建 ResNet-18 模型

def ResNet18(num_classes=1000):
    return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes)

model = ResNet18(num_classes=100)
print(model)


⚡ 六、验证模型运行

x = torch.randn(1, 3, 224, 224)
model = ResNet18(num_classes=10)
y = model(x)
print(y.shape)

输出:

torch.Size([1, 10])


🧠 七、总结与优化方向

优化点说明
BatchNorm保持分布稳定,加快收敛
ReLU(inplace=True)节省显存
AdaptiveAvgPool2d自适应输入尺寸
Residual Connection防止梯度消失,优化收敛

✅ ResNet 的成功,标志着“更深的网络可以更好地训练”,并成为现代 CNN 的重要基础(如 ResNeXt、DenseNet、EfficientNet 都继承其思想)。


🔗 八、参考资料与出站链接